Publications

2020
Moshe Armon, Marra, Francesco , Enzel, Yehouda , Rostkier-Edelstein, Dorita , and Morin, Efrat . 2020. Radar-Based Characterisation Of Heavy Precipitation In The Eastern Mediterranean And Its Representation In A Convection-Permitting Model. Hydrology And Earth System Sciences, 24, Pp. 1227–1249. doi:10.5194/hess-24-1227-2020. Abstract
Heavy precipitation events (HPEs) can lead to natural hazards (e.g. floods and debris flows) and contribute to water resources. Spatiotemporal rainfall patterns govern the hydrological, geomorphological, and societal effects of HPEs. Thus, a correct characterisation and prediction of rainfall patterns is crucial for coping with these events. Information from rain gauges is generally limited due to the sparseness of the networks, especially in the presence of sharp climatic gradients. Forecasting HPEs depends on the ability of weather models to generate credible rainfall patterns. This paper characterises rainfall patterns during HPEs based on high-resolution weather radar data and evaluates the performance of a high-resolution, convection-permitting Weather Research and Forecasting (WRF) model in simulating these patterns. We identified 41 HPEs in the eastern Mediterranean from a 24-year radar record using local thresholds based on quantiles for different durations, classified these events into two synoptic systems, and ran model simulations for them. For most durations, HPEs near the coastline were characterised by the highest rain intensities; however, for short durations, the highest rain intensities were found for the inland desert. During the rainy season, the rain field's centre of mass progresses from the sea inland. Rainfall during HPEs is highly localised in both space (less than a 10 km decorrelation distance) and time (less than 5 min). WRF model simulations were accurate in generating the structure and location of the rain fields in 39 out of 41 HPEs. However, they showed a positive bias relative to the radar estimates and exhibited errors in the spatial location of the heaviest precipitation. Our results indicate that convection-permitting model outputs can provide reliable climatological analyses of heavy precipitation patterns; conversely, flood forecasting requires the use of ensemble simulations to overcome the spatial location errors.
2019
Davide Zoccatelli, Marra, Francesco , Armon, Moshe , Rinat, Yair , Smith, James A. , and Morin, Efrat . 2019. Contrasting Rainfall-Runoff Characteristics Of Floods In Desert And Mediterranean Basins. Hydrology And Earth System Sciences Discussions, 12, Pp. 2665–2678. doi:https://doi.org/10.5194/hess-23-2665-2019. Abstract
Abstract. Catchment scale hydrological studies on drylands are lacking because of the scarcity of consistent data: observations are often available at the plot scale, but their relevance for the catchment scale remains unclear. A database of 24 years of stream gauge discharge and homogeneous high-resolution radar data over the eastern Mediterranean allows to describe the properties of moderate floods over catchments spanning from Desert to Mediterranean climates. Comparing two climatic regions, Desert and Mediterranean, we are able to better identify specific rainfall-runoff properties. Despite the large differences in rainfall forcing between the two regions, the resulting unit peak discharges and runoff coefficients are comparable. In Mediterranean areas rain depth and antecedent conditions are the most important properties to shape flood response. In Deserts, instead, storm core properties display a strong correlation with unit peak discharge and, to a less extent, with runoff coefficient. In this region, an inverse correlation with mean catchment annual precipitation suggests also a strong influence of local surface properties. Preliminary analyses suggest that floods in catchments with wet headwater and dry lower section are more similar to desert catchments, with a strong influence of storm core properties on runoff generation.
Moshe Armon, Morin, Efrat , and Enzel, Yehouda . 2019. Overview Of Modern Atmospheric Patterns Controlling Rainfall And Floods Into The Dead Sea: Implications For The Lake's Sedimentology And Paleohydrology. Quaternary Science Reviews, 216, Pp. 58–73. doi:10.1016/j.quascirev.2019.06.005. Publisher's Version Abstract
The Dead Sea sedimentary fill is the basis for interpreting limnological conditions and regional paleo- hydrology. Such interpretations require an understanding of present-day hydroclimatology to reveal the relative impact of different atmospheric circulation patterns on water and sediment delivery to the Dead Sea. Here we address the most important meteorological conditions governing regional and local rain- storm occurrences, with different discharge characteristics. These meteorological controls over the Dead Sea watershed offer insights into past hydrometeorological processes that could have governed the Dead Sea water budget, seasonal and annual flows, floods, and the resultant sedimentology. Rainfall is typically associated with synoptic-scale circulation patterns forced by an upper-level trough that include Medi- terranean cyclones (MCs), active Red Sea troughs (ARSTs), and active subtropical jets (STJs), although other rainstorms and sub-synoptic processes also affect the region. We point to their relative importance in inflow volume, peak discharges, and delivery of sediments from the various environments of the basin. MCs control the annual water amount discharging into the Dead Sea. A change in their frequency, in- tensity, or latitude can substantially alter the lake water balance. A change in frequency or intensity of ARSTs and STJs affects extreme flood and sediment discharge. Floods reach the lake through (a) the Mediterranean-climate-controlled Lower Jordan River, (b) desert-climate-controlled Nahal HaArava, and (c) the arid wadies draining directly into the Dead Sea, some with wetter headwaters. Floods in the wetter parts of the watershed are mainly controlled by MCs, and characterized by larger frequency, volume, and duration, but lower peak discharges and possibly sediment delivery, than floods in the desert parts, which can be produced by the three synoptic types. ARSTs contribute to heavy rainfall, typically of a spotty nature, in the desert parts of the watershed. STJs are currently rare, but their rainfall accumulation may be greater than the annual mean over a broad area in the southern dry Dead Sea watershed. This article presents a review of recent studies, which is extended with new analyses of meteorological, rainfall and flood data, underlining the importance of the Lower Jordan River in sup- plying water volume to the Dead Sea, as compared to the high-discharge, low-volume floods of the arid part of the watershed. Our analyses will help interpret paleoenvironmental conditions in the Dead Sea sedimentary record, and cope with the region's changing climate.
Francesco Marra, Zoccatelli, Davide , Armon, Moshe , and Morin, Efrat . 2019. A Simplified Mev Formulation To Model Extremes Emerging From Multiple Nonstationary Underlying Processes. Advances In Water Resources, 127, Pp. 280–290. doi:10.1016/j.advwatres.2019.04.002. Publisher's Version Abstract
This paper presents a Simplified Metastatistical Extreme Value formulation (SMEV) able to model hydro-meteorological extremes emerging from multiple underlying processes. The formulation explicitly includes the average intensity and probability of occurrence of the processes allowing to parsimoniously model changes in these quantities to quantify changes in the probability of occurrence of extremes. SMEV allows (a) frequency analyses of extremes emerging from multiple underlying processes and (b) computationally efficient analyses of the sensitivity of extreme quantiles to changes in the characteristics of the underlying processes; moreover, (c) it provides a robust framework for explanatory models, nonstationary frequency analyses, and climate projections. The methodology is applied to daily precipitation data from long recording stations in the eastern Mediterranean, using Weibull distributions to model daily precipitation amounts generated by two classes of synoptic systems. At-site application of SMEV provides spatially consistent estimates of extreme quantiles, in line with regional GEV estimates and generally characterized by reduced uncertainties. The sensitivity of extreme quantiles to changes and uncertainty in the intensity and yearly occurrences of events generated by different synoptic classes is examined, and an application of SMEV for the projection of future extremes is provided.
2018
Yoav Ben Dor, Armon, Moshe , Ahlborn, Marieke , Morin, Efrat , Erel, Yigal , Brauer, Achim , Schwab, Markus Julius , Tjallingii, Rik , and Enzel, Yehouda . 2018. Changing Flood Frequencies Under Opposing Late Pleistocene Eastern Mediterranean Climates. Scientific Reports, 8, Pp. 8445. doi:10.1038/s41598-018-25969-6. Publisher's Version Abstract
Floods comprise a dominant hydroclimatic phenomenon in aridlands with significant implications for humans, infrastructure, and landscape evolution worldwide. The study of short-term hydroclimatic variability, such as floods, and its forecasting for episodes of changing climate therefore poses a dominant challenge for the scientific community, and predominantly relies on modeling. Testing the capabilities of climate models to properly describe past and forecast future short-term hydroclimatic phenomena such as floods requires verification against suitable geological archives. However, determining flood frequency during changing climate is rarely achieved, because modern and paleoflood records, especially in arid regions, are often too short or discontinuous. Thus, coeval independent climate reconstructions and paleoflood records are required to further understand the impact of climate change on flood generation. Dead Sea lake levels reflect the mean centennial-millennial hydrological budget in the eastern Mediterranean. In contrast, floods in the large watersheds draining directly into the Dead Sea, are linked to short-term synoptic circulation patterns reflecting hydroclimatic variability. These two very different records are combined in this study to resolve flood frequency during opposing mean climates. Two 700-year-long, seasonally-resolved flood time series constructed from late Pleistocene Dead Sea varved sediments, coeval with significant Dead Sea lake level variations are reported. These series demonstrate that episodes of rising lake levels are characterized by higher frequency of floods, shorter intervals between years of multiple floods, and asignificantly larger number of years that experienced multiple floods. In addition, floods cluster into intervals of intense flooding, characterized by 75% and 20% increased frequency above their respective background frequencies during rising and falling lake-levels, respectively. Mean centennial precipitation in the eastern Mediterranean is therefore coupled with drastic changes in flood frequencies. These drastic changes in flood frequencies are linked to changes in the track, depth, and frequency of mid-latitude eastern Mediterranean cyclones, determining mean climatology resulting in wetter and drier regional climatic episodes.
Marieke Ahlborn, Armon, Moshe , Ben Dor, Yoav , Neugebauer, Ina , Schwab, Markus J. , Tjallingii, Rik , Shoqeir, Jawad Hasan , Morin, Efrat , Enzel, Yehouda , and Brauer, Achim . 2018. Increased Frequency Of Torrential Rainstorms During A Regional Late Holocene Eastern Mediterranean Drought. Quaternary Research, 89, Pp. 425–431. doi:10.1017/qua.2018.9. Abstract
Identifying climates favoring extreme weather phenomena is a primary aim of paleoclimate and paleohydrological research. Here, we present a well-dated, late Holocene Dead Sea sediment record of debris flows covering 3.3 to 1.9 cal ka BP. Twenty-three graded layers deposited in shallow waters near the western Dead Sea shore were identified by microfacies analysis. These layers represent distal subaquatic deposits of debris flows triggered by torrential rainstorms over the adjacent western Dead Sea escarpment. Modern debris flows on this escarpment are induced by rare rainstorms with intensities exceeding >30mm h−1 for at least one hour and originate primarily from the Active Red Sea Trough synoptic pattern. The observed late Holocene clustering of such debris flows during a regional drought indicates an increased influence of Active Red Sea Troughs resulting from a shift in synoptic atmospheric circulation patterns. This shift likely decreased the passages of eastern Mediterranean cyclones, leading to drier conditions, but favored rainstorms triggered by the Active Red Sea Trough. This is in accord with present-day meteorological data showing an increased frequency of torrential rainstorms in regions of drier climate. Hence, this study provides conclusive evidence for a shift in synoptic atmospheric circulation patterns during a late Holocene drought.
J Quade, Dente, E, Armon, M, Ben Dor, Y. , Morin, E , Adam, O, and Enzel, Y. 2018. Megalakes In The Sahara? A Review. doi:10.1017/qua.2018.46. Abstract
The Sahara was wetter and greener during multiple interglacial periods of the Quaternary, when some have suggested it featured very large (mega) lakes, ranging in surface area from 30,000 to 350,000 km 2 . In this paper, we review the physical and biological evidence for these large lakes, especially during the African Humid Period (AHP) 11–5 ka. Megalake systems from around the world provide a checklist of diagnostic features, such as multiple well-defined shoreline benches, wave-rounded beach gravels where coarse material is present, landscape smoothing by lacustrine sediment, large-scale deltaic deposits, and in places, tufas encrusting shorelines. Our survey reveals no clear evidence of these features in the Sahara, except in the Chad basin. Hydrologic modeling of the proposed megalakes requires mean annual rainfall ≥1.2 m/yr and a northward displacement of tropical rainfall belts by ≥1000 km. Such a profound displacement is not supported by other paleo-climate proxies and comprehensive climate models, challenging the existence of megalakes in the Sahara. Rather than megalakes, isolated wetlands and small lakes are more consistent with the Sahelo-Sudanian paleoenvironment that prevailed in the Sahara during the AHP. A pale-green and discontinuously wet Sahara is the likelier context for human migrations out of Africa during the late Quaternary.
Moshe Armon, Dente, Elad , Smith, James A. , Enzel, Yehouda , and Morin, Efrat . 2018. Synoptic-Scale Control Over Modern Rainfall And Flood Patterns In The Levant Drylands With Implications For Past Climates. Journal Of Hydrometeorology, 19, Pp. 1077–1096. doi:10.1175/JHM-D-18-0013.1. Publisher's Version Abstract
Rainfall in the Levant drylands is scarce, but can potentially generate high-magnitude flash floods. Rainstorms are caused by distinct synoptic-scale circulation patterns: Mediterranean cyclone (MC), active Red Sea trough (ARST) and subtropical jet stream (STJ) disturbances, also termed tropical plumes (TPs). The unique spatiotemporal characteristics of rainstorms and floods for each circulation pattern were identified. Meteorological reanalyses, quantitative precipitation estimates from weather radars, hydrological data, and indicators of geomorphic changes from remote-sensing imagery were used to characterize the chain of hydrometeorological processes leading to distinct flood patterns in the region.Significant differences in the hydrometeorology of these three flood-producing synoptic systems were identified: MC storms draw moisture from the Mediterranean and generate moderate rainfall in the northern part of the region. ARST and TP storms transfer large amounts of moisture from the south, which is converted to rainfall in the hyperarid southernmost parts of the Levant. ARST rainfall is local and intense, whereas TP rainfall is widespread and prolonged due to high precipitation efficiency and large-scale forcing. Thus, TP rainfall generates high-magnitude floods in the largest catchments; integration of numerous basins leads to sediment feeding from the south into the Dead Sea, exhibited in large sediment plumes. Anecdotal observations of the channel with the largest catchment in the region (Nahal HaArava) indicate that TP floods account for noticeable geomorphic changes in the channel. It provides insights into past intervals of increased flash flood frequency characterized by episodes of marked hydrogeomorphic work; such an increase is especially expected during intervals of southerly situated and southwesterly oriented STJs.